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1 Project Summary
This project aims to study the effect of noise in regression. The motivation originated from the
assumption that the noise does not follow Gaussian distribution, which is generally accepted.
The theoretical scenarios of noise are developed and tested through ideally generated datasets.

Methodology
A set of test is designed and performed to see whether having MSE as the objective function
for regression has a limit when a PDF of noise is different from the Gaussian.

A simple function is assumed as the reference model as shown in the following. Although the
study can be generalized into more complex problem, limiting the function to the first order
term helps to visualize the result.

𝑦 = 𝑓(𝑥) = 𝛽𝑥 + 𝑥0 (1)

The following chart represents the main process of testing the effect of an assumed noise
scenario.
Objective: Study the effect of the noise in a system having pdf in regression of true model.

Step 1: Generate 𝑥
Step 2: Generate 𝑦𝑜 = 𝑓𝑜(𝑥) from a true function 𝑓𝑜(𝑥) = 𝑏𝑥 + 𝑏𝑜

Step 3: Generate 𝑦 = 𝑓(𝑥) from a test function 𝑓(𝑥), such as 𝑦 = 𝑏𝑥 + 𝑏𝑜 + 𝜀
Step 3-1: 𝜀 is generated from a selected probability model

Step 4: 𝑔(𝑥) is based on (𝑥, 𝑦) to predict 𝑓𝑜(𝑥)
Step 5: Evaluate the regression effectiveness of 𝑔(𝑥) by 𝑒 = 𝑔(𝑥) − 𝑓𝑜(𝑥)

The residuals of the function, which is the noise, can have probability model such as Gaussian,
Uniform, and Beta distribution. For each case, a proper objective function is considered.
Thanks to the simple form of the function, the noise can be presented as the following simple
equation.

𝑔(𝑌 ) = 𝑋𝛽 + 𝜀 → 𝑌 = 𝑔−1(𝑋𝛽 + 𝜀)
→ 𝜀 = 𝑦𝑖 − 𝑔−1(𝑥𝑇

𝑖 𝛽)
(2)
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2 Cases of Probability Function
2.1 Uniform
Uniform distribution is commonly considered for the background noise (white noise) in the
electric engineering field. Data measurement through the sensors contains the white noise,
which affects on the precision and resolution capability of the sensor system.

𝑓(𝜀 | 𝑎, 𝑏) =
⎡⎣⎧⎨⎩

1
𝑏−𝑎

𝜀 ∈ [𝑎, 𝑏]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎤⎦ (3)

The loss function for Uniform distribution noise is derived.

𝐿(𝜃 | 𝑎, 𝑏) =
∏︁

𝑓(𝑦𝑖 − 𝑥𝑖𝜃 | 𝑎, 𝑏) =
∏︁ 1{(𝑦𝑖 − 𝑥𝑖𝜃) ∈ [𝑎, 𝑏]}

𝑏 − 𝑎
(4)

2.2 Beta Distribution Noise
Noise with Beta distribution is considered to include the skewed distribution case. Although
Beta distribution noise is uncommon, it is significant to generalize the study of various noise
scenarios. Furthermore, it helps to realize distinguishing noise model stemmed from a specific
physic system.

𝑓(𝑦; 𝛼, 𝛽) = 𝑦𝛼−1(1 − 𝑦)𝛽−1

𝐵(𝛼, 𝛽) Where, Mean : 𝜇 = 𝛼

𝛼 + 𝛽

Variance : 𝜎2 = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

𝐵(𝛼, 𝛽) =
∫︁ 1

0
𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡 = Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)

Γ(𝑧) =
∫︁ ∞

0
𝑡𝑧−1𝑒−𝑧𝑑𝑡

(5)

Where 𝐵 and Γ are the Beta and Gamma function. Here, 𝑔−1 can be assumed as a logistic
function for ensuring that Y will be in the range of 0 and 1. Log-Likelihood is the reasonable
to be used because of the natural exponential terms in the noise distribution.

𝐿(𝜀𝑖; 𝛼, 𝛽) = −
𝑛∑︁

𝑖=1
log
[︃

(𝑦𝑖 − 𝑔−1(𝑥𝑇
𝑖 𝛽))𝛼−1(1 − (𝑦𝑖 − 𝑔−1(𝑥𝑇

𝑖 𝛽)))𝛽−1

𝐵(𝛼, 𝛽)

]︃

= −
𝑛∑︁

𝑖=1

[︁
(𝛼 − 1) log(𝑦𝑖 − 𝑔−1(𝑥𝑇

𝑖 𝛽)) + (𝛽 − 1) log(1 − (𝑦𝑖 − 𝑔−1(𝑥𝑇
𝑖 𝛽))) − 𝑛 log 𝐵(𝛼, 𝛽)

]︁
(6)

The loss function for Beta distribution noise is derived as the following form.

𝐿(𝑦|𝛼, 𝛽) = −
𝑛∑︁

𝑖=1
log(𝑦𝛼−1

𝑖 (1 − 𝑦𝑖)𝛽−1) + 𝑛 log 𝐵(𝛼, 𝛽) (7)
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2.3 Laplace Distribution
Laplace distribution, or Double Exponential distribution, is uded to describe a system having
deviated mean in either direction with exponential decay of probabilities, which is useful for
modeling changes or differences such as financial returns or signal processing.

𝑓(𝑥|𝜇, 𝑏) = 1
2𝑏

𝑒𝑥𝑝

(︃
−|𝑥 − 𝜇|

𝑏

)︃
→𝑃 (𝑛𝑖) = 1

2𝑏
𝑒𝑥𝑝

(︃
−|𝑛𝑖 − 𝜇|

𝑏

)︃

→𝑃 (𝑦𝑖|𝑥𝑖; 𝜃) = 1
2𝑏

𝑒𝑥𝑝

(︃
−|𝑦𝑖 − 𝑥𝑖𝜃 − 𝜇|

𝑏

)︃ (8)

The exponential term in the PDF leaded to consider the log-likelihood as the loss function.

𝐿(𝜃) =
𝑛∏︁

𝑖=0
𝑃 (𝑦𝑖|𝑥𝑖; 𝜃) → 𝐿𝑜𝑔(𝐿(𝜃)) =

𝑛∑︁
𝑖=0

𝐿𝑜𝑔(𝑃 (𝑦𝑖|𝑥𝑖; 𝜃))

=
𝑛∑︁

𝑖=0

[︃
−|𝑦𝑖 − 𝑥𝑖𝜃 − 𝜇|

𝑏
+ 𝑙𝑜𝑔

(︂1
𝑏

)︂]︃ (9)

2.4 Heteroscedastic
Heteroscedastic case is relevant for the case that varying variability at different levels or that
measurement precision might depend on the size or concentration of the item being measured.

𝑌 = 𝑋𝜃 + 𝑁 where 𝑁 (0, |𝑋|𝜎2) (10)

It is similar to Gaussian distribution except the deviation of distribution function has 𝑋
term in it.

𝑃 (𝑛𝑖) = 1
|𝑥|𝜎

√
2𝜋

𝑒𝑥𝑝(−1
2

𝑛2
𝑖

|𝑥|2𝜎2 ) → 𝑃 (𝑦𝑖|𝑥𝑖; 𝜃) = 1
|𝑥|𝜎

√
2𝜋

𝑒𝑥𝑝(−1
2

(𝑦𝑖 − 𝑥𝑖𝜃)2

|𝑥|2𝜎2 ) (11)

Log-likelihood is proper to consider the loss function due to the exponent terms.

𝐿(𝜃) =
𝑛∏︁

𝑖=0
𝑃 (𝑦𝑖|𝑥𝑖; 𝜃) → 𝐿𝑜𝑔(𝐿(𝜃)) =

𝑛∑︁
𝑖=0

𝐿𝑜𝑔(𝑃 (𝑦𝑖|𝑥𝑖; 𝜃))

=
𝑛∑︁

𝑖=0
−1

2
(𝑦𝑖 − 𝑥𝑖𝜃)2

|𝑥|2𝜎2 𝑙𝑜𝑔(|𝑥𝑖|𝜎
√

2𝜋)
(12)

2.5 Gaussian Mixture Models
Mixing multiple Gaussian models is also considered to cover a combined complex system.

𝑃 (𝑦𝑖|𝑥𝑖; 𝜃) = 𝑝

𝜎1
√

2𝜋
𝑒𝑥𝑝

(︃
−(𝑦𝑖 − 𝑥𝑖𝜃 − 𝑚𝑢1)2

2𝜎2
1

)︃
+ 𝑞

𝜎2
√

2𝜋
𝑒𝑥𝑝

(︃
−(𝑦𝑖 − 𝑥𝑖𝜃 − 𝑚𝑢1)2

2𝜎2
2

)︃
(13)

3 Results
Our investigations into the impact of various noise distributions on regression models yielded
enlightening findings. The primary objective was to assess whether mean squared error (MSE)
is effective as an objective function under non-Gaussian noise conditions.

3



3.1 Effectiveness of MSE Under Different Noises
Uniform distribution in noises results in noise that does not favour any particular segment
of the data range over another. MSE helps in capturing the average performance of a
model across the entire range of data. Meanwhile, MSE is highly sensitive to outliers in the
context of beta-distributed noise. The test model has 0.3 and 2 for coefficient and intersect.

(a) Uniform Distribution Noise (b) Normal Distribution Noise (c) Beta Distribution Noise

Figure 1 Regression of the function with noises of varying PDFs

Unfortunately, the challenging regression process prevented the study from further processing.
Specifically, theoretically deriving the uniform distribution noise was not resolved due to
the limited form of the loss function’s derivation. The limited the error domain of Beta
distribution noise within the range from 0 to 1 hurt or disabled the training process. Gaussian
distribution noise case suffered divergence in training for regression. Conclusively, this study
was finalized by the theoretical study.

Noise PDF MSE Loss Function Modified Loss Function
(Result) (𝛽,𝛽𝑜) (MSE) (𝛽,𝛽𝑜) (MSE)
Uniform 0.301833 2.009793 - -
Normal 0.284884 2.018960 - -

Beta 0.308963 2.859334 - -

4 Conclusion
This project underscored the critical impact of noise distribution on the performance of
regression models. The assumption of Gaussian noise, while prevalent and often effective,
does not universally hold, particularly in real-world scenarios where noise characteristics may
vary significantly. In conclusion, our study highlights the necessity for a critical examination
of the underlying assumptions in regression analysis, especially regarding noise distribution.
By embracing more versatile and adaptive approaches, the field can better accommodate the
complexities of real-world data, leading to more accurate and reliable predictive models.

Chin Wei Herng and Chang Guoyun collected various material for study and studied mixed
Gaussian and uniform model in addition to preparation of presentation materials. Keunhyoung
Park worked on study of Beta, testing on the modified loss functionsand final report. Ritarka
Samanta studied Laplace, and Heteroscedastic models, in addition to coordinating the team
project activities from schedule to distributing the tasks.
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