Introduction

The base-model selector for the TANGO framework currently iterates through a list of
object-detection models and picks the ‘best’ model. The current method of picking the best
model involves first creating a small subset of images from the COCO dataset. The subset of
images is run on all candidate models to obtain latency and accuracy metrics. Together, these
metrics create a new evaluation metric (accuracy divided by latency) to guess at a model that
presents the best tradeoff between accuracy and latency. The base model is selected only once
and may be susceptible to differences between the sample set and the testing set. It is expected
that a dynamic selector since it is being used many times, will be able to select the model that is
right for the image, which can lead to improvements in both performance as well as latency. It
will also help that an incorrect choice can easily be rectified in the next pick. Picking the selector
only once, at the start of the program, creates the risk that a sub-par choice can affect all

downstream tasks.

Recent Upgrades

The base-model selector was upgraded in the summer of 2023. Instead of choosing between the
YolovS5 family of models, the selector now chooses between models in the yolov7 family. The
most significant difference is that Yolov7 models, on average, possess lower latency and higher
accuracy while simultaneously using fewer parameters (see Image 4). While upgrading the
model went smoothly, the largest problem came in the form of slow inference speeds,
unfamiliarity with docker, and broken sections of the codebase. The slow inference speeds were

resolved once GPUs were acquired; however, fixing the broken docker orchestration turned out

to be more difficult than expected. The upgrade was made and tested outside of any containers,

and eventually, the broken interfaces to other parts of the TANGO framework were repaired.

Entropy 1 4 Model1
/
/
/
/
Entropy 2 Selector > Model 2
/ \
s N
\
\
A
Entropy 3 1 Model 3

Image 1: Inference Architecture with Selector

Selector

Instead of making one prediction for the entire dataset, a new selector mechanism was created to
allow for the dynamic selection of models. A complex image should be run on a slow and
complex model, and a simple image should be run on a smaller but faster model. This dynamic
routing can allow the users to obtain a better accuracy/latency metric. This way unexpected
variations in the dataset, can still be handled gracefully. To create such an evaluator, the resulting
mechanism must be trivially fast compared to the cost of running the selected object-detection

model, otherwise, it would simply be easier to run the largest model every time.

The selector, under the hood, is simply an SVM. As an input, it takes in an array of Shannon
entropy values and outputs the model that it believes is able to provide the best accuracy/latency

ratio. For a given dataset, the Shannon entropy has been shown to correlate with the performance

of semantic segmentation networks and as such, was chosen to be an indicator of image
complexity to feed into the selector for the object detection models. The image is split into
several sections, and an entropy value is calculated for each section, creating an array of
entropies as input. To train the SVM, each image was labeled with the smallest model that was

able to detect all the objects in the scene.

Data Distribution

Threshold

= X-axis: Best Model (smallest to largest)

= Y-axis: Baseline MAP

Image 2: Plot showing the most frequently chosen models by the selector

Conclusion

It was noticed that regardless of the training setup, the selector strongly preferred picking the
smallest model over others. Additionally, it was seen that the accuracy between models could
differ only by a hundredth or thousandth of a percent. It was also noticed that the Yolov7 family
of models in general did not vary significantly in mAP. With the current architecture setup to
optimize accuracy divided by latency, the selector will almost always choose the fastest model.

The different Yolov7 versions are meant to service different types of GPUs rather than the

accuracy or latency metric. Additionally, the yolov7 models are also specialized for certain types
of inputs/use cases. For example, the Yolov7-X may be good for handling images of size
640x640, but may fail when exposed to 1280x1280 size. Another of the same family, such as
Yolov7-w6, would perform better here. Note that for a group of object-detection models that
have a significantly larger accuracy and latency distribution, a selector may be the correct
approach. For the Yolov7 family, the accuracies are simply too close to where differences in
model selection are more likely to be perpetuated by training randomness rather than any

meaningful information.

Input Image Dimension Matters: YOLOV7

(1280x1280)

Image 3: Graph showing the accuracy of Yolov7 models with a 1280x1280 size input image

Table 2: Comparison of state-of-the-art real-time object detectors.

Model | #Param. | FLOPs | Size | FPS | AP!S'/APUe! | APLST APLSE APLST APLSt APY
YOLOX-S[21] 9.0M 268G | 640 | 102 | 40.5%/405% - - - -

YOLOX-M [21] 253M | 738G | 640 | 81 | 47.2%/369% . - . -

YOLOX-L [21] S4IM | 1556G | 640 | 69 | 50.1%/497% - - - -

YOLOX-X [21] 99.IM | 2819G | 640 | 58 | 513%/511% . - . -
PPYOLOE-S [£] 7.9M 174G | 640 | 208 | 43.1%/427% | 60.5% 466% 232% 464% 569%
PPYOLOE-M [55] 234M | 499G | 640 | 123 66.5% W6% 529% 638%
PPYOLOE-L [#5] 522M | 101G | 640 | 78 68.9% 314% 553% 66.1%
PPYOLOE-X [#5] 984M | 2066G | 640 | 45 69.9% 3B3A% 563% 66.4%
YOLOvS-N (r6.1) [27] 19M 45G | 640 | 159

YOLOVS-S (r6.1) [27] 7.2M 165G | 640 | 156

YOLOVE-M (r6.1)[23] | 21.2M | 490G | 640 | 122

YOLOVS-L (r6.1) [2] 46.5M | 1091G | 640 | 99 - -

YOLOvS-X (r6.1) [23] 86.7M | 2057G | 640 | 83

YOLOR-CSP [51] 529M | 1204G | 640 | 106 | SLI%/508% | 69.6% 557% 317% 55.3% 64.7%
YOLOR-CSP-X [§1] 969M | 2268G | 640 | 87 | 530%/527% | 714% §79% 337% SL1% 668%
YOLOVI-tiny-SiLU 6.2M 138G | 640 | 286 | 387%/387% | 567% 417% 188% 424% 51.9%
YOLOV? 369M | 1047G | 640 | 161 | 51.4%/51.2% T% 55.9% 318% 55.5% 65.0%
YOLOVI-X TIAM | 1899G | 640 | 114 | S31%/529% | 712% 578% 338% ST1% 674%
YOLOvS-N6 (r6.1) [27] 3.2M 184G 1280 | 123 -136.0% - - - -

YOLOvS-S6 (r6.1) [21] 12.6M 672G | 1280 | 122 -/ 44.8% - - - -
YOLOVS-M6 (r6.1) [23] | 357M | 2000G | 1280 | 90 -/513% . - . -
YOLOVS-L6 (r6.1) [23] | 76.8M | 4456G | 1280 | 63 -1537% - - - -
YOLOVS-X6 (r6.1) [23] | 1407M | 8392G | 1280 | 38 -/55.0% - - - -

YOLOR-P6 [51] 372M | 3256G | 1280 | 76 | 539%/535% | 714% 589% 361% S1.7% 65.6%
YOLOR-W6 [#1] 798G | 4 1280 | 66 | 552%/548% | T27% 605% 377% S90% 67.0%
YOLOR-E6 [#1] 115.8M | 6! 1280 | 45 55.8% /55.7% 734% 6l.1% 38.4% 59.7% 61.7%
YOLOR-DS6 [51] IS17M | 9356G | 1280 | 34 | 565%/561% | TAI% 619% 389% 604% 68.7%
YOLOVI-W6 704M | 360.0G | 1280 | 84 | 549%/546% | 72.6% 60.1% 373% 587% 611%
YOLOVI-E6 97.2M | 5I52G | 1280 | 56 | 56.0%/559% | 735% 612% 380% 59.9% 08.4%
YOLOvI-D6 1547M | BO6BG | 1280 | 44 | S56.6%/563% | 740% 618% 388% 60.1% 69.5%
YOLOVI-EG6E I1S17M | 8432G | 1280 | 36 | S68%/568% | 744% 62.1% 393% 60.5% 69.0%

! Qur FLOPs is calaculated by rectangle input resolution like 640 > 640 or 1280 x 1280.
? Our inference time is estimated by using letterbox resize input image to make its long side equals to 640 or 1280.

Image 4: Yolo Family Models and Statistics

For further proof, a t-SNE plot was created to investigate any potential clustering. As seen below,
it is quite dominated by purple (the smallest model). It is expected the clusters that do form, relay
the semantic information (if there is a bike, car, etc.) of the image rather than any supposed
complexity. Since no clear correlation was found and for most purposes, the models perform
very similarly, there is no significant advantage to using a model selector for the yolov7 family

of models.

TSNE: test_step.embedding_3

60

o I.‘.
¥
'o.'

-
20 <o ¢

fo Be S0 e !, > - * . 1Y .
o IR o 'h?\ .,1._5 Wb o B am | W o~ Sraie
& ¥] % o b+ x) .. . e o0 Ly .. o, N » -l'_
2 RN o SRRy e I Lot
-20 g .;““ :;}:}5?-. ‘ﬂ;}%;h}{&.: 8 ; -:: .‘.‘_-“'.-'n:f.: . #Eﬂ%
o o PlGie, 03 Lo o .
‘Y ..I“--'"'“-‘g_e e O 4 25 "'g,ﬁ»:" A B ooy
5 B AT Vel e
P P '.rn."-.l'é S5 \'5",.3 o e 'M"
40 ' Y . .:ﬁ"’*le".;. ' s o, vods
" | -'J:%* T e

-60 &, Eﬁ'
* o

Image 5: t-SNE distribution dominated by points of the smallest model

Code Design

The base model selector in TANGO will be upgraded again to incorporate the research presented
above. The first goal is to use an entropy-based model selection mechanism. This shall come in
the manner of a pre-trained SVM, especially since it would be simply too time-consuming to
train an SVM during run-time. A new mechanism will be created to have an SVM trained
(perhaps with a dataset as an input parameter), which will not only output the trained .pt file, but
also create a report of the SVM statistics. The second goal is to support dataset-generalized
selection. Our design above allows the user to select a model for each image. However, such a
design may not integrate well into the current needs of the project and will need to support the
previous approach of picking one model for the entire dataset. It is expected that using a
pre-trained SVM will be significantly faster than running inference on all Yolo models against a

subset of images since calculating the entropy of an image only needs to be done once and is

computationally cheaper than running inference for all models. A large subset of images will
simply be passed onto the selector and the most frequently picked model shall be chosen as the
most efficient. The increased speed can allow for either a more complex predictor or for the
selector to take in a larger subset before making its decision. Implementing the image-specific

design can prove to be a challenging task and will not be prematurely added to reduce code bloat.

References

[1] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOV7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors,” arXiv:2207.02696 [cs], Jul. 2022, Available:

https://arxiv.org/abs/2207.02696

[2] “Measures of Complexity for Large Scale Image Datasets | IEEE Conference Publication |

IEEE Xplore,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/9065274 (accessed Dec.

13, 2023).

[3]Y.J. Cruz, M. Rivas, R. Quiza, R. E. Haber, F. Castafio, and A. Villalonga, “A two-step
machine learning approach for dynamic model selection: A case study on a micro milling
process,” Computers in Industry, vol. 143, p. 103764, Dec. 2022, doi:

https://doi.org/10.1016/j.compind.2022.103764.

https://arxiv.org/abs/2207.02696
https://ieeexplore.ieee.org/document/9065274
https://doi.org/10.1016/j.compind.2022.103764

